Geoengineering, Coal Fly Ash and the New Heart-Iron Connection: Universal Exposure to Iron Oxide Nanoparticulates

Main Article Content

Mark Whiteside
J. Marvin Herndon


Globally, air pollution is the leading environmental cause of human disease and death, and it is a major contributor to cardiovascular disease. Air pollution damages the cardiovascular system by oxidative stress, inflammation, endothelial dysfunction, and pro-thrombotic changes. Ultrafine particulate matter from the combustion of fossil fuels delivers the most potent and harmful elements of air pollution. Coal fly ash is a rich source of nano-sized metal, iron oxide, and carbonaceous particles. Previous findings revealed that coal fly ash is widely utilized in undisclosed tropospheric aerosol geoengineering.  Proper iron balance is central to human health and disease, and the harmful effects of iron are normally prevented by tightly controlled processes of systemic and cellular iron homeostasis. Altered iron balance is linked to the traditional risk factors for cardiovascular disease. The iron-heart hypothesis is supported by epidemiological, clinical, and experimental studies. Biogenic magnetite (Fe3O4) serves essential life functions, but iron oxide nanoparticles from anthropogenic sources cause disease. The recent finding of countless combustion-type magnetic nanoparticles in damaged hearts of persons from highly polluted areas is definitive evidence of the connection between the iron oxide fraction of air pollution and cardiovascular disease.  Spherical magnetic iron oxide particles found in coal fly ash and certain vehicle emissions match the exogenous iron pollution particles found in the human heart. Iron oxide nanoparticles cross the placenta and may act as seed material for future cardiovascular disease. The pandemic of non-communicable diseases like cardiovascular disease and also rapid global warming can be alleviated by drastically reducing nanoparticulate air pollution. It is crucial to halt tropospheric aerosol geoengineering, and to curb fine particulate emissions from industrial and traffic sources to avoid further gross contamination of the human race by iron oxide-type nanoparticles.

Cardiology, particulates, aerosols, coal fly ash, climate intervention, particulate air pollution, magnetite, nanoparticles, geoengineering.

Article Details

How to Cite
Whiteside, M., & Herndon, J. M. (2019). Geoengineering, Coal Fly Ash and the New Heart-Iron Connection: Universal Exposure to Iron Oxide Nanoparticulates. Journal of Advances in Medicine and Medical Research, 31(1), 1-20.
Review Article


Herndon JM. New indivisible planetary science paradigm. Curr Sci. 2013;105(4): 450-60.

Von Drygalski A, Adamson JW. Iron metabolism in man. Journal of Parenteral and Enteral Nutrition. 2013;37(5):599-606.

Amils R, González-Toril E, Gómez F, Fernández-Remolar D, García-Moyano A, Malki M, editors. Iron, a Critical Element for the Origin and Development of Life. Astrobiology;: Mary Ann Liebert Inc. 140 Huguenot Street, 3rd FL, New Rochelle, NY 10801 USA; 2007.
[Accessed November 5, 2019]

Weinberg ED. The hazards of iron loading. Metallomics. 2010;2(11):732-40.

Bell ML, Ebisu K, Leaderer BP, Gent JF, Lee HJ, Koutrakis P, et al. Associations of PM2.5 constituents and sources with hospital admissions: Analysis of four counties in Connecticut and Massachusetts (USA). Environ Health Perspect. 2014;122(2):138-44.

Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, et al. The Lancet Commission on pollution and health. The lancet. 2018;391(10119):462-512.

State of Global Air.
[Accessed October 26, 2019]

Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 2004;109(21): 2655-71.

Brook RD, Rajagopalan S, Pope III CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010; 121(21):2331-78.

Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, et al. Ambient particulate air pollution and daily mortality in 652 cities. New England Journal of Medicine. 2019;381(8):705-15.

Rajagopalan S, Al-Kindi SG, Brook RD. Air pollution and cardiovascular disease: JACC state-of-the-art review. Journal of the American College of Cardiology. 2018; 72(17):2054-70.

Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung S-H, Mortimer K, et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems. CHEST. 2019;155(2):417-26.

Meo S, Suraya F. Effect of environmental air pollution on cardiovascular diseases. Eur Rev Med Pharmacol Sci. 2015;19(24): 4890-7.

Bourdrel T, Bind M-A, Béjot Y, Morel O, Argacha J-F. Cardiovascular effects of air pollution. Archives of Cardiovascular Diseases. 2017;110(11):634-42.

Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A. Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci. 2010;14(10):809-21.

Du Y, Xu X, Chu M, Guo Y, Wang J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. Journal of Thoracic Disease. 2016;8(1):E8.

Garrido ID, López LR, Seda JD, Aparcero LB, Chacartegui IM. Types, structure, and function of scientific articles. Archivos espanoles de urologia. 2002;55(8):890-3.

Eady AM, Wilczynski NL, Haynes RB, Team H. PsycINFO search strategies identified methodologically sound therapy studies and review articles for use by clinicians and researchers. Journal of Clinical Epidemiology. 2008;61(1):34-40.

Herndon JM. Inseparability of science history and discovery. Hist Geo Space Sci. 2010;1:25-41.

Pöschl U. Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition. 2005;44(46):7520-40.

Ito A. Atmospheric processing of combustion aerosols as a source of bioavailable iron. Environmental Science & Technology Letters. 2015;2(3):70-5.

Ito A, Myriokefalitakis S, Kanakidou M, Mahowald NM, Scanza RA, Hamilton DS, et al. Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances. 2019;5(5):eaau7671.

Matsui H, Mahowald NM, Moteki N, Hamilton DS, Ohata S, Yoshida A, et al. Anthropogenic combustion iron as a complex climate forcer. Nature Communications. 2018;9(1):1593.

Moteki N, Adachi K, Ohata S, Yoshida A, Harigaya T, Koike M, et al. Anthropogenic iron oxide aerosols enhance atmospheric heating. Nature Communications. 2017; 8:15329.

Herndon JM. Aluminum poisoning of humanity and Earth's biota by clandestine geoengineering activity: Implications for India. Curr Sci. 2015;108(12):2173-7.

Herndon JM. Obtaining evidence of coal fly ash content in weather modification (geoengineering) through analyses of post-aerosol spraying rainwater and solid substances. Ind J Sci Res and Tech. 2016; 4(1):30-6.

Herndon JM. Adverse agricultural consequences of weather modification. Agrivita Journal of Agricultural Science. 2016;38(3):213-21.

Herndon JM, Whiteside M. Further evidence of coal fly ash utilization in tropospheric geoengineering: Implications on human and environmental health. J Geog Environ Earth Sci Intn. 2017;9(1):1-8.

Herndon JM, Whiteside M. Contamination of the biosphere with mercury: Another potential consequence of on-going climate manipulation using aerosolized coal fly ash J Geog Environ Earth Sci Intn. 2017;13(1): 1-11.

Herndon JM, Whiteside M. California wildfires: Role of undisclosed atmospheric manipulation and geoengineering. J Geog Environ Earth Sci Intn. 2018;17(3):1-18.

Herndon JM, Whiteside M, Baldwin I. Fifty Years after How to Wreck the Environment: Anthropogenic Extinction of Life on Earth. J Geog Environ Earth Sci Intn. 2018;16(3):1-15.

Poet S, Moore H, Martell E. Lead 210, bismuth 210, and polonium 210 in the atmosphere: Accurate ratio measurement and application to aerosol residence time determination. Journal of Geophysical Research. 1972;77(33):6515-27.

Baskaran M, Shaw GE. Residence time of arctic haze aerosols using the concentrations and activity ratios of 210Po, 210Pb and 7Be. Journal of Aerosol Science. 2001;32(4):443-52.

Quinn P, Bates T, Baum E, Doubleday N, Fiore A, Flanner M, et al. Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics. 2008; 8(6):1723-35.

Ogren J, Charlson R. Elemental carbon in the atmosphere: cycle and lifetime. Tellus B. 1983; 35(4):241-54.

Delany A, Shedlovsky J, Pollock W. Stratospheric aerosol: The contribution from the troposphere. Journal of Geophysical Research. 1974;79(36):5646-50.

Gudiksen PH, Fairhall A, Reed RJ. Roles of mean meridional circulation and eddy diffusion in the transport of trace substances in the lower stratosphere. Journal of Geophysical Research. 1968; 73(14):4461-73.

Russell PB, Uthe EE. Acoustic and direct measurements of atmospheric mixing at three sites during an air pollution incident. Atmospheric Environment. 1978;12(5): 1061-74.

Heidrich C, Feuerborn H-J, Weir A, editors. Coal combustion products: a global perspective. World of Coal Ash Conference; 2013.

Moreno N, Querol X, Andrés JM, Stanton K, Towler M, Nugteren H, et al. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel. 2005;84:1351-63.

Tishmack JK, Burns PE. The chemistry and mineralogy of coal and coal combustion products. Geological Society, London, Special Publications. 2004;236(1): 223-46.

Saikia BK, Saikia J, Rabha S, Silva LF, Finkelman R. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geoscience Frontiers. 2018;9(3):863-75.

Zhao D, Sun B. Atmospheric pollution from coal combustion in China. Journal of the Air Pollution Control Association. 1986; 36(4):371-4.

Guttikunda SK, Jawahar P. Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmospheric Environment. 2014;92:449-60.

Smith KR, Veranth JM, Kodavanti UP, Aust AE, Pinkerton KE. Acute pulmonary and systemic effects of inhaled coal fly ash in rats: comparison to ambient environmental particles. Toxicological Sciences. 2006; 93(2):390-9.

Eastlund BJ, Jenkins LM, editors. Taming tornadoes: storm abatement from space. 2001 IEEE Aerospace Conference Proceedings (Cat No 01TH8542);: IEEE; 2001.

Herndon JM, Whiteside M. Further evidence that particulate pollution is the principal cause of global warming: Humanitarian considerations. Journal of Geography, Environment and Earth Science International. 2019;21(1):1-11.

Herndon JMW, M. Geophysical consequences of tropospheric particulate heating: Further evidence that anthropogenic global warming is principally caused by particulate pollution. Journal of Geography, Environment and Earth Science International.;In Press; 2019.

Shearer C, West M, Caldeira K, Davis SJ. Quantifying expert consensus against the existence of a secret large-scale atmospheric spraying program. Environ Res Lett. 2016;11(8):084011.

Tingley D, Wagner G. Solar geoengineering and the chemtrails conspiracy on social media. Palgrave Communications. 2017;3(1):12.
[Accessed October 26, 2019]

[Accessed October 26, 2019]

Herndon JM, Whiteside M. Geoengineering: The deadly new global “Miasma”. Journal of Advances in Medicine and Medical Research. 2019;29(12):1-8.

Whiteside M, Herndon JM. Coal fly ash aerosol: Risk factor for lung cancer. Journal of Advances in Medicine and Medical Research. 2018;25(4):1-10.

Whiteside M, Herndon JM. Aerosolized coal fly ash: Risk factor for neurodegenerative disease. Journal of Advances in Medicine and Medical Research. 2018;25(10):1-11.

Whiteside M, Herndon JM. Aerosolized coal fly ash: Risk factor for COPD and respiratory disease. Journal of Advances in Medicine and Medical Research. 2018; 26(7):1-13.

Carrington D, Taylor M. Air pollution is the ‘new tobacco’, warns WHO head. The Gaurdian; 2018.

Fisher GL. Biomedically relevant chemical and physical properties of coal combustion products. Environ Health Persp. 1983;47: 189-99.

Herndon JM, Williams DD, Whiteside M. Previously unrecognized primary factors in the demise of endangered torrey pines: A microcosm of global forest die-offs. J Geog Environ Earth Sci Intn. 2018;16(4):1-14.

Sparling DW, Lowe TP. Environmental hazards of aluminum to plants, invertibrates, fish, and wildlife. Rev Environ Contam Toxicol. 1996;145:1-127.

Silva L, Moreno T, Querol X. An introductory TEM study of Fe-nanominerals within coal fly ash. Science of the Total Environment. 2009;407(17): 4972-4.

Liu H, Sun Q, Wang B, Wang P, Zou J. Morphology and Composition of Microspheres in Fly Ash from the Luohuang Power Plant, Chongqing, Southwestern China. Minerals. 2016;6(2): 30.

Veranth JM, Smith KR, Huggins F, Hu AA, Lighty JS, Aust AE. Mössbauer spectroscopy indicates that iron in an aluminosilicate glass phase is the source of the bioavailable iron from coal fly ash. Chemical Research in Toxicology. 2000; 13(3):161-4.

Linak WP, Yoo J-I, Wasson SJ, Zhu W, Wendt JO, Huggins FE, et al. Ultrafine ash aerosols from coal combustion: Characterization and health effects. Proceedings of the Combustion Institute. 2007;31(2):1929-37.

Chen H, Laskin A, Baltrusaitis J, Gorski CA, Scherer MM, Grassian VH. Coal fly ash as a source of iron in atmospheric dust. Environmental Science & Technology. 2012;46(4):2112-20.

Chen Y, Shah N, Huggins F, Huffman G, Dozier A. Characterization of ultrafine coal fly ash particles by energy filtered TEM. Journal of Microscopy. 2005;217(3):225-34.

Chen Y, Shah N, Huggins FE, Huffman GP. Transmission electron microscopy investigation of ultrafine coal fly ash particles. Environ Science and Technogy. 2005;39(4):1144-51.

Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, et al. Adverse cardiovascular effects of air pollution. Nature Reviews Cardiology. 2009;6(1):36.

Kelly FJ. Oxidative stress: its role in air pollution and adverse health effects. Occupational and Environmental Medicine. 2003;60(8):612-6.

Kravchenko J, Lyerly HK. The impact of coal-powered electrical plants and coal ash impoundments on the health of residential communities. North Carolina Medical Journal. 2018;79(5):289-300.

Liu L, Breitner S, Schneider A, Cyrys J, Brüske I, Franck U, et al. Size-fractioned particulate air pollution and cardiovascular emergency room visits in Beijing, China. Environmental Research. 2013;121:52- 63.

Maher BA, Ahmed IAM, Karloukovski V, MacLauren DA, Foulds PG, al. e. Magnetite pollution nanoparticles in the human brain. Proc Nat Acad Sci. 2016; 113(39):10797-801.

Costa DL, Dreher KL. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environmental Health Perspectives. 1997; 105(Suppl 5):1053.

Yaman M, Erel E. Determination of Fe, Zn and Cu in ambient air by Combining pre-concentration Methods and FAAS. International Journal of Environmental Research. 2013;7(4):989-94.

Suarez A, Ondov J. Ambient aerosol concentrations of elements resolved by size and by source: contributions of some cytokine-active metals from coal-and oil-fired power plants. Energy & Fuels. 2002; 16(3):562-8.

Solenkova NV, Newman JD, Berger JS, Thurston G, Hochman JS, Lamas GA. Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure. American Heart Journal. 2014;168(6):812-22.

Wang J, Li S, Li H, Qian X, Li X, Liu X, et al. Trace metals and magnetic particles in PM 2.5: Magnetic identification and its implications. Scientific Reports. 2017;7(1): 9865.

Ball BR, R. Smith K, M. Veranth J, E. Aust A. Bioavailability of iron from coal fly ash: mechanisms of mobilization and of biological effects. Inhalation Toxicology. 2000;12(sup4):209-25.

Ghio AJ, Cohen MD. Disruption of iron homeostasis as a mechanism of biologic effect by ambient air pollution particles. Inhalation Toxicology. 2005;17(13):709-16.

Ghio AJ, Soukup JM, Dailey LA. Air pollution particles and iron homeostasis. Biochimica et Biophysica Acta (BBA)-General Subjects. 2016;1860(12):2816-25.

Gozzelino R, Arosio P. Iron homeostasis in health and disease. International Journal of Molecular Sciences. 2016;17(1):130.

Ganz T, Nemeth E. Hepcidin and disorders of iron metabolism. Annual Review of Medicine. 2011;62:347-60.

Ganz T. Systemic iron homeostasis. Physiological Reviews. 2013;93(4):1721-41.

Dev S, Babitt JL. Overview of iron metabolism in health and disease. Hemodialysis International. 2017;21:S6-S20.

Kühn LC. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics. 2015;7(2):232-43.

Kobayashi M, Suhara T, Baba Y, Kawasaki NK, Higa JK, Matsui T. Pathological roles of iron in cardiovascular disease. Current drug targets. 2018;19(9):1068-76.

Sullivan J. Iron and the sex difference in heart disease risk. The lancet. 1981; 317(8233):1293-4.

Aursulesei V, Cozma A, Krasniqi A. Iron hypothesis of cardiovascular disease: still controversial. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi. 2014;118(4):901-9.

Rajapurkar MM, Shah SV, Lele SS, Hegde UN, Lensing SY, Gohel K, et al. Association of catalytic iron with cardiovascular disease. The American Journal of Cardiology. 2012;109(3):438-42.

Kraml P. The role of iron in the pathogenesis of atherosclerosis. Physiological Research. 2017;66.

Sullivan JL. Iron in arterial plaque: a modifiable risk factor for atherosclerosis. Biochimica et Biophysica Acta (BBA)-General Subjects. 2009;1790(7):718-23.

Riško P, Pláteník J, Buchal R, Potočková J, Kraml PJ. The labile iron pool in monocytes reflects the activity of the atherosclerotic process in men with chronic cardiovascular disease. Physiological Research. 2017;66(1).

Nairz M, Theurl I, Swirski FK, Weiss G. “Pumping iron”—how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflügers Archiv-European Journal of Physiology. 2017; 469(3-4):397-418.

Cornelissen A, Guo L, Sakamoto A, Virmani R, Finn AV. New insights into the role of iron in inflammation and atherosclerosis. EbioMedicine; 2019.

Kraml PJ, Klein RL, Huang Y, Nareika A, Lopes-Virella MF. Iron loading increases cholesterol accumulation and macrophage scavenger receptor I expression in THP-1 mononuclear phagocytes. Metabolism. 2005;54(4):453-9.

Kruszewski M. The role of labile iron pool in cardiovascular diseases. Acta Biochimica Polonica-English Edition-. 2004;51:471-80.

Sullivan JL. Macrophage iron, hepcidin, and atherosclerotic plaque stability. Experimental Biology and Medicine. 2007; 232(8):1014-20.

Kopriva D, Kisheev A, Meena D, Pelle S, Karnitsky M, Lavoie A, et al. The nature of iron deposits differs between symptomatic and asymptomatic carotid atherosclerotic plaques. PLoS ONE. 2015;10(11): e0143138.

Brook RD, Newby DE, Rajagopalan S. Air pollution and cardiometabolic disease: An update and call for clinical trials. American Journal of Hypertension. 2017;31(1):1- 10.

Basuli D, Stevens RG, Torti FM, Torti SV. Epidemiological associations between iron and cardiovascular disease and diabetes. Frontiers in Pharmacology. 2014;5:117.

Piperno A, Trombini P, Gelosa M, Mauri V, Pecci V, Vergani A, et al. Increased serum ferritin is common in men with essential hypertension. Journal of Hypertension. 2002;20(8):1513-8.

Kim MK, Baek KH, Song K-H, Kang MI, Choi JH, Bae JC, et al. Increased serum ferritin predicts the development of hypertension among middle-aged men. American Journal of Hypertension. 2012; 25(4):492-7.

Valenti L, Maloberti A, Signorini S, Milano M, Cesana F, Cappellini F, et al. Iron stores, hepcidin, and aortic stiffness in individuals with hypertension. PLoS ONE. 2015;10(8):e0134635.

Tuomainen T-P, Punnonen K, Nyyssönen K, Salonen JT. Association between body iron stores and the risk of acute myocardial infarction in men. Circulation. 1998; 97(15):1461-6.

Fernández-Real JM, Manco M. Effects of iron overload on chronic metabolic diseases. The lancet Diabetes & Endocrinology. 2014;2(6):513-26.

Rockfield S, Chhabra R, Robertson M, Rehman N, Bisht R, Nanjundan M. Links between iron and lipids: implications in some major human diseases. Pharmaceuticals. 2018;11(4):113.

Sangani RG, Ghio AJ. Iron, human growth, and the global epidemic of obesity. Nutrients. 2013;5(10):4231-49.

Herman M, Kościelniak P. Analytical evaluation of the iron transfer from cigarette tobacco to human body. Nukleonika. 2004;49:39-42.

Ghio AJ, Hilborn ED, Stonehuerner JG, Dailey LA, Carter JD, Richards JH, et al. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med. 2008; 178:1130-8.

Jordanova N, Jordanova D, Henry B, Le Goff M, Dimov D, Tsacheva T. Magnetism of cigarette ashes. Journal of Magnetism and Magnetic Materials. 2006;301(1):50-66.

Wilson MD, Prasad KA, Kim JS, Park JH. Characteristics of metallic nanoparticles emitted from heated Kanthal e-cigarette coils. Journal of Nanoparticle Research. 2019;21(7):156.

Kim H, Shin C, Baik I. Associations between Lifestyle Factors and Iron Overload in Korean Adults. Clinical Nutrition Research. 2016;5(4):270-8.

O’Keefe JH, Bhatti SK, Bajwa A, DiNicolantonio JJ, Lavie CJ, editors. Alcohol and cardiovascular health: The dose makes the poison or the remedy. Mayo Clinic Proceedings; Elsevier; 2014.

Milic S, Mikolasevic I, Orlic L, Devcic E, Starcevic-Cizmarevic N, Stimac D, et al. The role of iron and iron overload in chronic liver disease. Medical science monitor: International medical Journal of Experimental and Clinical Research. 2016; 22:2144.

Cowan LT, Lutsey PL, Pankow JS, Matsushita K, Ishigami J, Lakshminarayan K. Inpatient and outpatient infection as a trigger of cardiovascular disease: the ARIC Study. Journal of the American Heart Association. 2018;7(22):e009683.

Sullivan JL, Weinberg ED. Iron and the role of Chlamydia pneumoniae in heart disease. Emerging Infectious Diseases. 1999;5(5):724.

Zhabyeyev P, Oudit GY. Unravelling the molecular basis for cardiac iron metabolism and deficiency in heart failure. Oxford University Press; 2016.

Lakhal-Littleton S. Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radical Biology and Medicine. 2019;133:234-7.

Lakhal-Littleton S, Wolna M, Carr CA, Miller JJ, Christian HC, Ball V, et al. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function. Proceedings of the National Academy of Sciences. 2015;112(10):3164-9.

Gammella E, Recalcati S, Rybinska I, Buratti P, Cairo G. Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxidative Medicine and Cellular longevity; 2015.

Fibach E, Rachmilewitz EA. Iron overload in hematological disorders. La Presse Médicale. 2017;46(12):e296-e305.

Cabantchik ZI, Rachmilewitz EA. Labile iron: potential toxicity in iron overload disorders. The Hematologist (American Society of Hematology). 2015;12(2).

Stamenkovic A, Pierce GN, Ravandi A. Phospholipid oxidation products in ferroptotic myocardial cell death. American Journal of Physiology-Heart and Circulatory Physiology. 2019;317(1):H156-H63.

Grigsby JD. Detrital magnetite as a provenance indicator. Journal of Sedimentary Research. 1990;60(6):940-51.

Gieré R. Magnetite in the human body: Biogenic vs. anthropogenic. Proceedings of the National Academy of Sciences. 2016;113(43):11986-7.

Grassi-Schultheiss P, Heller F, Dobson J. Analysis of magnetic material in the human heart, spleen and liver. Biometals. 1997; 10(4):351-5.

Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proceedings of the National Academy of Sciences. 1992; 89(16):7683-7.

Kirschvink JL. Microwave absorption by magnetite: A possible mechanism for coupling nonthermal levels of radiation to biological systems. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association. 1996;17(3):187-94.

Rajendran K, Sen S. Metallic Nanoparticles in the Food Industry: Advantages and Limitations. Nanotechnology in Nutraceuticals: CRC Press. 2016;79-108.

Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: From bacteria to humans. International Journal of Nanomedicine. 2017;12:4371.

Zanella D, Bossi E, Gornati R, Bastos C, Faria N, Bernardini G. Iron oxide nanoparticles can cross plasma membranes. Scientific Reports. 2017;7(1): 11413.

Van de Walle A, Sangnier AP, Abou-Hassan A, Curcio A, Hémadi M, Menguy N, et al. Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. Proceedings of the National Academy of Sciences. 2019;116(10):4044-53.

Könczöl M, Ebeling S, Goldenberg E, Treude F, Gminski R, Gieré R, et al. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-kB. Chem Res Toxicol. 2011; 24(9):1460-75.

Zhu M-T, Wang Y, Feng W-Y, Wang B, Wang M, Ouyang H, et al. Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells. Journal of Nanoscience and Nanotechnology. 2010;10(12):8584-90.

Calderón-Garcidueñas L, González-Maciel A, Mukherjee PS, Reynoso-Robles R, Pérez-Guillé B, Gayosso-Chávez C, et al. Combustion-and friction-derived magnetic air pollution nanoparticles in human hearts. Environmental Research. 2019:108567.

Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JrF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic Rabbits. Circulation. 2001;103(3):415-22.

Nemmar A, Beegam S, Yuvaraju P, Yasin J, Tariq S, Attoub S, et al. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Particle and Fibre Toxicology. 2015;13(1):22.

Oh J, Feldman MD, Golombek H, Kim J, Sanghi P, Do D, et al. Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography. Journal of Biomedical Optics. 2008;13(5):054006.

Maher BA. Airborne Magnetite-and Iron-Rich Pollution Nanoparticles: Potential Neurotoxicants and Environmental Risk Factors for Neurodegenerative Disease, Including Alzheimer’s Disease. Journal of Alzheimer's Disease. 2019(Preprint):1-14.

Sutto TE. Magnetite fine particle and nanoparticle environmental contamination from industrial uses of coal. Environmental Pollution. 2018;243:528-33.

Sanderson P, Su S, Chang I, Saborit JD, Kepaptsoglou D, Weber R, et al. Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment. Atmospheric Environment. 2016;140:167-75.

Mummullage S, Egodawatta P, Ayoko GA, Goonetilleke A. Use of physicochemical signatures to assess the sources of metals in urban road dust. Science of the Total Environment. 2016;541:1303-9.

Rönkkö T, Timonen H. Overview of Sources and Characteristics of Nanoparticles in Urban Traffic-Influenced Areas. Journal of Alzheimer's Disease. 2019(Preprint):1-14.

Popovicheva OB, Kireeva ED, Steiner S, Rothen-Rutishauser B, Persiantseva NM, Timofeev MA, et al. Microstructure and chemical composition of diesel and biodiesel particle exhaust. Aerosol Air Qual Res. 2014;14(5):1392-401.

Bućko MS, Magiera T, Johanson B, Petrovský E, Pesonen LJ. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses. Environmental Pollution. 2011;159(5):1266-76.

Liati A, Pandurangi SS, Boulouchos K, Schreiber D, Dasilva YAR. Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments. Atmospheric Environment. 2015;101:34-40.

Abdul-Razzaq W, Gautam M. Discovery of magnetite in the exhausted material from a diesel engine. Applied Physics Letters. 2001;78(14):2018-9.

Babajide O, Petrik L, Musyoka N, Amigun B, Ameer F. Use of coal fly ash as a catalyst in the Production of Biodiesel; 2010.

Ghofur A, Hadi A, Putra MD. Potential fly ash waste as catalytic converter for reduction of HC and CO emissions. Sustainable Environment Research. 2018; 28(6):357-62.

Ramanan MV, Yuvarajan D. Emission analysis on the influence of magnetite nanofluid on methyl ester in diesel engine. Atmospheric Pollution Research. 2016; 7(3):477-81.

Ghio AJ, Carraway MS, Madden MC. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. Journal of Toxicology and Environmental Health, Part B. 2012; 15(1):1-21.

Guo B, Zebda R, Drake SJ, Sayes CM. Synergistic effect of co-exposure to carbon black and Fe2O3 nanoparticles on oxidative stress in cultured lung epithelial cells. Particle and fibre toxicology. 2009;6(1): 4.

Pereira M, Oliveira L, Murad E. Iron oxide catalysts: Fenton and Fentonlike reactions–a review. Clay Minerals. 2012; 47(3):285-302.

Muthusamy S, Nallathambi SS, kumar Ramasamy R, Mohamed ST. Effects of nanoparticles blended biodiesel on single cylinder CI engine. Materials Today: Proceedings. 2018;5(2):6831-8.

Gajera KN, Rawal RB. Effects of addition of various nanoparticles on performance and emission properties of compression ignition engine with diesel and biodiesel blends as a fuel – A review study. International Journal of Advance Research and Innovative Ideas in Education. 2018; 4(1):562-8.

Snow SJ, McGee J, Miller DB, Bass V, Schladweiler MC, Thomas RF, et al. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects. Toxicological Sciences. 2014; 142(2):403-17.

Slezakova K, Morais S, do Carmo Pereira M. Atmospheric nanoparticles and their impacts on public health. Current topics in public health: IntechOpen; 2013.

Mayer A, Czerwinski J, Kasper M, Ulrich A, Mooney JJ. Metal oxide particle emissions from diesel and petrol engines. SAE Technical Paper; Report No.: 0148-7191; 2012.

Karjalainen P, Rönkkö T, Simonen P, Ntziachristos L, Juuti P, Timonen H, et al. Strategies To Diminish the Emissions of Particles and Secondary Aerosol Formation from Diesel Engines. Environmental Science & Technology. 2019;53(17):10408-16.

Li W, Xu L, Liu X, Zhang J, Lin Y, Yao X, et al. Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems. Science Advances. 2017; 3(3):e1601749.

Whiteside M, Herndon JM. Aerosolized coal fly ash: A previously unrecognized primary factor in the catastrophic global demise of bird populations and species. Asian J Biol. 2018;6(4):1-13.

Cheung K, Ntziachristos L, Tzamkiozis T, Schauer J, Samaras Z, Moore K, et al. Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Science and Technology. 2010; 44(7):500-13.

Buseck PR, Adachi K. Nanoparticles in the atmosphere. Elements. 2008;4(6):389-94.

Kittelson DB. Engines and nanoparticles: A review. Journal of Aerosol Science. 1998; 29(5-6):575-88.

Brohi RD, Wang L, Talpur HS, Wu D, Khan FA, Bhattarai D, et al. Toxicity of nanoparticles on the reproductive system in animal models: a review. Frontiers in Pharmacology. 2017;8:606.

Lewis M, Worobey J, Ramsay DS, McCormack MK. Prenatal exposure to heavy metals: effect on childhood cognitive skills and health status. Pediatrics. 1992; 89(6):1010-5.

Gorr MW, Velten M, Nelin TD, Youtz DJ, Sun Q, Wold LE. Early life exposure to air pollution induces adult cardiac dysfunction. American Journal of Physiology-Heart and Circulatory Physiology. 2014;307(9): H1353-H60.

Morales-Rubio RA, Alvarado-Cruz I, Manzano-León N, Uribe-Ramirez M, Quintanilla-Vega B, Osornio-Vargas A, et al. In utero exposure to ultrafine particles promotes placental stress-induced programming of renin-angiotensin system-related elements in the offspring results in altered blood pressure in adult mice. Particle and Fibre Toxicology. 2019;16(1): 7.

Bové H, Bongaerts E, Slenders E, Bijnens EM, Saenen ND, Gyselaers W, et al. Ambient black carbon particles reach the fetal side of human placenta. Nat Commun (Accepted 2019). 2019;10.

Di Bona K, Xu Y, Gray M, Fair D, Hayles H, Milad L, et al. Short-and long-term effects of prenatal exposure to iron oxide nanoparticles: influence of surface charge and dose on developmental and reproductive toxicity. International Journal of Molecular Sciences. 2015;16(12):30251-68.

Collard KJ. Iron homeostasis in the neonate. Pediatrics. 2009;123(4):1208- 16.

Barker DJ. Fetal origins of coronary heart disease. Bmj. 1995;311(6998):171- 4.

Perera FP. Multiple threats to child health from fossil fuel combustion: Impacts of air pollution and climate change. Environmental Health Perspectives. 2016; 125(2):141-8.