oprD Genes Detected in Pseudomonas aeruginosa Isolates from a Teaching Hospital but Lost in a Carbapenem-Resistant Strain

Main Article Content

Eucharia E. Nmema
Chioma S. Osuagwu
Eunice N. Anaele

Abstract

Aims: The aims of the study were to evaluate the multidrug resistance profile and mechanisms of carbapenem resistance in Pseudomonas aeruginosa clinical isolates using phenotypic and genotypic methods.


Study Design: A descriptive laboratory based study.


Place and Duration of Study: Microbiology Laboratory, Ondo State University of Science and Technology, Okitipupa, and Biotechnology Laboratory, Ladoke Akintola University of Technology, Osogbo, Nigeria, between June 2017 and November 2018.


Methodology: Ten P. aeruginosa isolates were recovered from patients at Lagos University Teaching Hospital, and susceptibilities to imipenem (10 µg), meropenem (10 µg) and a panel of antibiotics were performed by the disk diffusion method. Genotypic methods including Polymerase Chain Reactions (PCR) and agarose gel electrophoresis were carried out according to established protocols. oprD and blaIMP gene primers were used for the PCR amplification.


Results: Fifty percent (50%) of the isolates showed multiple drug resistance. Four isolates (40%) were carbapenem resistant (CR). oprD gene was detectedin 90% (9/10) of the isolates. 75% (3/4) of CR strains were among the strains showing oprD gene. 25% (1/4) CR strain (PA1421) was oprD negative. Loss or mutation of oprD gene seems to be the mechanism of carbapenem resistance in strain PA1421.


Conclusion: Loss or mutation of oprD gene was identified in this study as a mechanism of carbapenem resistance. oprD gene encodes the outer membrane protein (OprD) porin in P. aeruginosa whose deficiency confers resistance to carbapenems, especially imipenem. Surveillance of the antimicrobial susceptibility patterns of P. aeruginosa is of critical importance in understanding new and emerging resistance trends, reviewing antibiotic policies and informing therapeutic options.

Keywords:
OprD, blaIMP, carbapenem resistance, Nigeria, Pseudomonas aeruginosa

Article Details

How to Cite
Nmema, E., Osuagwu, C., & Anaele, E. (2019). oprD Genes Detected in Pseudomonas aeruginosa Isolates from a Teaching Hospital but Lost in a Carbapenem-Resistant Strain. Journal of Advances in Medicine and Medical Research, 29(9), 1-8. https://doi.org/10.9734/jammr/2019/v29i930122
Section
Original Research Article

Article Metrics


References

World Health Organization Media Centre. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva; 2017.

Al-Bayssari C, Valentini C, Gomez C, Reynaud-Gaubert M, Rolain JM. First detection of insertion sequence element ISPa1328 in the OprD porin gene of an imipenem-resistant Pseudomonas aeruginosa isolate from an idiopathic pulmonary fibrosis patient in Marseille, France. New Microb New Infect. 2015;7:26-27.

Meletis G, Exindari M, Vavatsi N, Sofianou D, Diza E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia. 2012;16(4):303–307.

Yayan J, Gbebremedhin B, Rasche K. Antibiotic resistance of Pseudomonas aeruginosa in Pneumonia at a Single University Hospital Center in Germany over a ten year period. PLoS ONE. 2015;10(10):e0139836.
DOI: 10.1371/journal.pone.0139836

Diene SM, L’homme T, Bellulo S, Stremler N, Dubus J-C, Mely L. ISPa46, a novel insertion sequence in the OprD porin gene of an imipenem-resistant Pseudomonas aruginosa isolate from a cyctic fibrosis patient in Marseille, France. Int J Antimicrob Agents. 2013;42:268-271. [PubMed

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 27th Ed. CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.

De Medici D, Croci L, Delibato E, Di Pasquale S, Filetici E, Toti L. Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry. Appl Environ Microbiol. 2003;69(6):3456–3461.
[PMC free article] [PubMed]

Mayoral C, Noroña M, Baroni MR, Giani R, Zalazar F. Evaluation of a nested-PCR assay for Streptococcus pneumoniae detection in pediatric patients with community-acquired pneumonia. Rev Argent Microbiol. 2005;37(4):184–188. [PubMed]

Pirnay J-P, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J. Pseudomonas aeruginosa population structure revisited. PLoS ONE. 2009;4(11).

Shariati A, Azimi T, Ardebili A, Chirani AS, Bahramian A, Pormohammad A, Sadredinamin M, Erfanimanesh, S, Bostanghadiri N, Shams S, Hashemi A. Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran, Iran. New Microbes New Infect. 2018;21:75-80.
DOI: 10.1016/j.nmni.2017.10.013

Tesalona S, Lagamayo E, Tuban E, Ello MG, Hoshina R. Antibiotic profiling and detection of blaIMP-1 and blaVIM-2 in carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa from selected Tertiary Hospitals in Metro Manila, Philippines. JSM Microbiol. 2017;5(3):1044.

Pitout JDD, Gregson DB, Poirel L, McClure J, Le P, Church DL. Detection of Pseudomonas aeruginosa producing Metallo-β-Lactamases in a large centralized laboratory. J Clin Microbiol. 2005;43(7):3129-3135.

Clinical and Laboratory Standards Institute (CLSI). Performance standard for antimicrobial susceptibility testing; 24th Informational Supplement. CLSI Document M100-S24. Clinical and Laboratory Standards Institute, Wayne, PA; 2014.

Shashikala KR, Kanungo S, Srinivasan SD. Emerging resistance to carbapenems in hospital acquired Pseudomonas infection: A cause for concern. Indian J Pharmacol. 2006.38(4):287-288.

Yin S, Chen P, You B, Zhang Y, Jiang B, Huang G, Yang Z, Chen Y, Chen J, Yuan Z, Zhao Y, Li M, Hu F, Gong Y, Peng Y. Molecular typing and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a Chinese Burn Center from 2011 to 2016. Front Microbiol. 2018;9:1135.
DOI: 10.3389/fmicb.2018.01135

Nmema EE. Peculiar pattern of antibiotic resistance in bacteria isolated from various sources in South-East Nigeria and the implications in health and economy. J Appl Sci Environ Manage. 2013;17(4):529-34.

Mendelson M, Brink A, Gouws J, Mbelle N, Naidoo V, Pople T, Schellack N, van Vuuren M, Rees H. South African One Health Stewardship Sub-Committee of the Ministerial Advisory Committee on Antimicrobial Resistance. Lancet Infect Dis. 2018;18(9): e288-e294.
DOI:10.1016/S1473-3099(18)30119-1 Epub.

Ahmed AJA. Antibiotics susceptibility pattern and virulence-associated genes in clinical and environmental strains of Pseudomonas aeruginosa in Iraq. Asian J Sci Res. 2018;11(3):401-408.
DOI: 10.3923/ajsr.2018.401.408

Horii T, Muramatsu H, Morita M, Maekawa M. Characterization of Pseudomonas aeruginosa isolates from patients with urinary tract infections during antibiotic therapy. Microb Drug Resist. 2003;9:223–229. [PubMed]

Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis. 2006;43(Suppl 2):S49–S56.

Farra A, Islam S, Strålfors A, Sörberg M, Wretlind B. Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int J Antimicrob Agents. 2008;31:427–433. [PubMed]

Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother. 1999;43:1379–1382. [PMC free article] [PubMed]

Li H, Luo YF, Williams BJ, Blackwell TS, Xie CM. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Microbiol. 2012;302(2):63-8.
DOI: 10.1016/j.ijmm.2011.10.001

Al-Ouqaili MTS, Jal’oot AS, Badawy AS. Identification of an OprD and blaIMP gene-mediated carbapenem resistance in Acinetobacter baumannii and Pseudomonas aeruginosa among patients with wound infections in Iraq. Asian J Pharm. 2018;12(3) /S965.